Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dirk Johrendt* and Regina Pocha

Institut für Anorganische Chemie und Strukturchemie II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany

Correspondence e-mail: johrendt@uni-duesseldorf.de

Key indicators

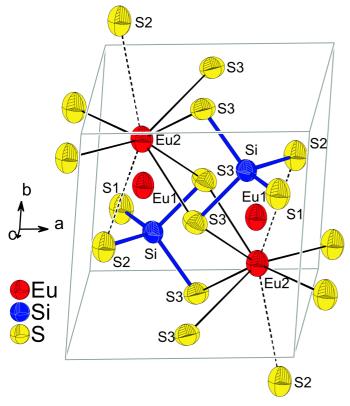
Single-crystal X-ray study T = 100 KMean σ (S–Si) = 0.003 Å R factor = 0.045 wR factor = 0.072 Data-to-parameter ratio = 25.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Europium thiosilicate at 100 K

The crystal structure of Eu₂SiS₄ was determined from singlecrystal data. The title compound crystallizes as a monoclinic Sr₂GeS₄-type in the space group $P2_1/m$, both at room temperature and at 100 K. The main structural features are almost undistorted SiS₄⁴⁻ tetrahedra and Eu²⁺ in 6(+2) coordination by sulfur. The thiosilicate is isotypic with the paraelectric phase of Eu₂GeS₄, stable above $T_C = 335$ K. Unlike the thiogermanate, down to 100 K Eu₂SiS₄ shows no structural transition into a ferroelectric phase with space group $P2_1$. Received 15 June 2001 Accepted 21 June 2001 Online 29 June 2001


Comment

Recently, we reported on the structural phase transition of monoclinic europium thiogermanate (Tampier & Johrendt, 2001). Eu₂GeS₄ crystallizes in the space group $P2_1$ at room temperature (α -Eu₂GeS₄), but above the Curie point T_C = 335 K, the structure is centrosymmetric with the space group $P2_1/m$ (β -Eu₂GeS₄). The main contributions of the transition are an anti-distorsive tilt of the tetrahedral GeS₄⁴⁻ groups and small shifts of the Eu²⁺ ions, whose coordination numbers change from 7 to 6(+2). The mechanism is similar to what has been found for isostructural ferroelectric K₂ZnBr₄ (Bärnighausen, 1992). From the structural viewpoint, we concluded that Eu₂GeS₄ should be ferroelectric below T_C = 335 K and paraelectric above this temperature.

Europium thiosilicate, Eu₂SiS₄, has already been mentioned in the literature (Olivier-Fourcade et al., 1978), but up to now no detailed structural data have been published. From our results on Eu₂GeS₄ the question arises, whether or not the isostructural thiosilicate also undergoes a ferroelectric phase transition. In order to clarify this, we have first determined the room-temperature structure of Eu₂SiS₄. This confirmed the monoclinic structure type in the space group $P2_1/m$. This structure did not differ significantly from the low temperature structure except that the displacement parameters U^{22} of the S1 and S2 on the mirror plane (2e) were 0.030 $Å^2$, in contrast to S3 on the general position (4f) with $U^{22} = 0.010 \text{ Å}^2$. This indicated only a small degree of disorder, if at all, of the S atoms on the special position. In going to lower temperatures, a structural transition would manifest itself by an ordering of the S1 and S2 positions and small shifts of the Eu atoms away from $y = \frac{1}{4}$, tantamount to a change of the space group to the non-centrosymmetric P21.

The structure determination of Eu_2SiS_4 at 100 K resulted in different behaviour. Important interatomic distances are listed in Table 1. The displacement parameters U^{22} of the S atoms in question decrease to 0.016 Å². This means that the deviation

inorganic papers

Figure 1 Unit cell of the crystal structure of Eu₂SiS₄.

of the S1 and S2 atoms from their ideal position $y = \frac{1}{4}$ decreases with temperature and would probably vanish as $T \rightarrow 0$. Attempts to refine the structure with space group $P2_1$ were not successful. Thus, Eu_2SiS_4 is isotypic with β -Eu₂GeS₄, but shows no transition to the non-centrosymmetric α -phase; rather, it changes continuously towards the ideal Sr_2GeS_4 type.

Fig. 1 shows the unit cell of Eu_2SiS_4 emphasizing the SiS₄tetrahedra and the coordination of europium. Six S atoms form a trigonal prism and two extra S atoms are located over the square faces (dashed bonds). Fig. 2 shows the connection of the EuS₆ polyhedra and the additional S atoms between them. The S1 and S2 atoms are slightly disordered in the space group $P2_1/m$ and move towards the mirror plane as the temperature decreases. If the $P2_1/m \rightarrow P2_1$ transition would occur, the dashed Eu-S bonds would have unequal lengths due to the ordering of S1 and S2 and the opposing shifts of europium. This would lead to a ferroelectric structure as is the case for europium thiogermanate, but not for the thiosilicate.

Experimental

 Eu_2SiS_4 was prepared from the elements in two steps. First, europium metal and silicon powder were heated to 1173 K for 15 h in a quartz tube under an argon atmosphere. The resulting alloy was ground in an argon-filled glove-box and then oxidized by the stoichiometric amount of sulfur at 1123 K for 24 h, again homogenized and reheated to 1073 K for 50 h. This results in a dark-yellow powder containing small single crystals suitable for the X-ray experiments.

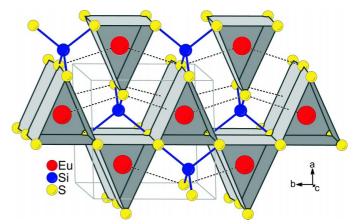


Figure 2

Crystal structure of Eu_2SiS_4 . The 6(+2)-coordination of the Eu atoms and the SiS_4 -tetrahedra are emphasized.

 $D_x = 4.563 \text{ Mg m}^{-3}$

Cell parameters from 3437

Mo $K\alpha$ radiation

reflections

T = 100 (2) K

 $R_{\rm int} = 0.106$

 $\theta_{\rm max} = 30.4^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -9 \rightarrow 9$

 $l = -11 \rightarrow 11$

Intensity decay: none

Irregular, dark yellow

0.09 \times 0.08 \times 0.07 mm

890 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} \theta = 3 - 30^{\circ} \\ \mu = 19.84 \ \mathrm{mm}^{-1} \end{array}$

Crystal data

Eu₂SiS₄ $M_r = 460.25$ Monoclinic, $P2_1/m$ a = 6.524 (1) Å b = 6.591 (1) Å c = 8.205 (2) Å $\beta = 108.29$ (3)° V = 334.99 (11) Å³ Z = 2

Data collection

Stoe IPDS diffractometer ω scans Absorption correction: Gaussian (X-RED; Stoe & Cie, 1998) $T_{min} = 0.075$, $T_{max} = 0.143$ 5587 measured reflections 1062 independent reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0350P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.045$ + 1.9742P]

 $wR(F^2) = 0.072$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.13 $(\Delta/\sigma)_{max} < 0.001$

 1062 reflections
 $\Delta\rho_{max} = 1.82$ e Å⁻³

 41 parameters
 $\Delta\rho_{min} = -1.55$ e Å⁻³

 Extinction correction: SHELXL97

Extinction correction: *SHELXL9* Extinction coefficient: 0.0051 (7)

Table 1

Selected geometric parameters (Å, °).

Eu1-S2 ⁱ	2.940 (2)	Eu2-S3 ^{vii}	3.0247 (15)
Eu1-S3 ⁱⁱ	2.9914 (16)	Eu2-S3	3.0958 (17)
Eu1-S3 ⁱⁱⁱ	2.9914 (16)	Eu2-S3 ^{iv}	3.0958 (17)
Eu1-S1 ⁱ	3.018 (2)	Eu2-S1 ^{viii}	3.104 (2)
Eu1-S3	3.0912 (16)	Eu2-S2 ^{ix}	3.4134 (7)
Eu1-S3 ^{iv}	3.0912 (16)	Eu2-S2 ^{vi}	3.4134 (7)
Eu1-S1 ^v	3.4683 (8)	Si1-S3 ^{iv}	2.121 (2)
Eu1-S1 ⁱⁱ	3.4683 (8)	Si1-S3	2.121 (2)
Eu2-S2 ⁱ	2.990 (2)	Si1-S2	2.123 (3)
Eu2-S3 ^{vi}	3.0247 (15)	Si1-S1	2.124 (3)
S3 ^{iv} -Si1-S3	102.51 (13)	S3 ^{iv} -Si1-S1	109.14 (9)
S3 ^{iv} -Si1-S2	109.74 (9)	\$3-\$i1-\$1	109.14 (9)
\$3-\$i1-\$2	109.74 (9)	\$2-\$i1-\$1	115.75 (14)

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, -y, -z; (iii) $1 - x, \frac{1}{2} + y, -z$; (iv) $x, \frac{1}{2} - y, z$; (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, 1 - z; (vii) $1 - x, \frac{1}{2} + y, 1 - z$; (viii) 1 + x, y, 1 + z; (ix) 1 - x, 1 - y, 1 - z.

The data collection was performed on a Stoe IPDS diffractometer, equipped with an Oxford Cryostream cooler. The measuring temperature was 100 ± 2 K. 118 exposures were taken in the φ -range of $0-284^{\circ}$ with a crystal to detector distance of 50 mm and an exposure time of 3 min. Dynamic profiles (9–25 pixels) with no allowance for overlap were used for integration. 96.7% completeness of data has been achieved in the θ -range 2.6–30.35°. Absorption effects were corrected numerically using the experimental crystal description. The atomic coordinates of Eu₂GeS₄ were initially used and refined by least-squares cycles using *SHELXL*97 (Sheldrick, 1997).

Data collection: *IPDS Software* (Stoe & Cie, 1998); cell refinement: *IPDS Software*; data reduction: *IPDS Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL*97. We thank Professor Dr A. Mewis and Professor Dr W. Frank for their interest and financial support. This work was supported financially by the Deutsche Forschungsgemeinschaft (Jo257/3) and the Fonds der Chemischen Industrie.

References

Bärnighausen, H. (1992). IVth European Conference on Solid State Chemistry at Dresden, Germany. Book of Abstracts, p. 296.

Brandenburg, K. (1998). *DIAMOND*. Version 2.0, Crystal Impact GbR, Bonn, Germany.

- Olivier-Fourcade, J., Jumas J. C., Ribes, M., Philippot, E. & Maurin, M. (1978). J. Solid State Chem. 23, 155–176.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Revision 4.21/V, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Stoe & Cie (1998). IPDS Software. Version 2.87. Stoe & Cie GMBH, Darmstadt, Germany.
- Tampier, M. & Johrendt, D. (2001). J. Solid State Chem. 158, 343-348.